Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 1991 Feb;57(2):366-73.

Survival and catabolic activity of natural and genetically engineered bacteria in a laboratory-scale activated-sludge unit.

Author information

  • 1School of Pure and Applied Biology, University of Wales College of Cardiff, United Kingdom.


The survival of selected naturally occurring and genetically engineered bacteria in a fully functional laboratory-scale activated-sludge unit (ASU) was investigated. The effect of the presence of 3-chlorobenzoate (3CB) on the survival of Pseudomonas putida UWC1, with or without a chimeric plasmid, pD10, which encodes 3CB catabolism, was determined. P. putida UWC1(pD10) did not enhance 3CB breakdown in the ASU, even following inoculation at a high concentration (3 x 10(8) CFU/ml). The emergence of a natural, 3CB-degrading population appeared to have a detrimental effect on the survival of strain UWC1 in the ASU. The fate of two 3CB-utilizing bacteria, derived from activated-sludge microflora, was studied in experiments in which these strains were inoculated into the ASU. Both strains, AS2, an unmanipulated natural isolate which flocculated readily in liquid media, and P. putida ASR2.8, a transconjugant containing the recombinant plasmid pD10, survived for long periods in the ASU and enhanced 3CB breakdown at 15 degrees C. The results reported in this paper illustrate the importance of choosing strains which are well adapted to environmental conditions if the use of microbial inoculants for the breakdown of target pollutants is to be successful.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center