Format

Send to

Choose Destination
Cell Stem Cell. 2010 Feb 5;6(2):141-52. doi: 10.1016/j.stem.2010.01.001.

Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells.

Author information

1
Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA.

Abstract

eNOS expression is elevated in human glioblastomas and correlated with increased tumor growth and aggressive character. We investigated the potential role of nitric oxide (NO) activity in the perivascular niche (PVN) using a genetic engineered mouse model of PDGF-induced gliomas. eNOS expression is highly elevated in tumor vascular endothelium adjacent to perivascular glioma cells expressing Nestin, Notch, and the NO receptor, sGC. In addition, the NO/cGMP/PKG pathway drives Notch signaling in PDGF-induced gliomas in vitro, and induces the side population phenotype in primary glioma cell cultures. NO also increases neurosphere forming capacity of PDGF-driven glioma primary cultures, and enhances their tumorigenic capacity in vivo. Loss of NO activity in these tumors suppresses Notch signaling in vivo and prolongs survival of mice. This mechanism is conserved in human PDGFR amplified gliomas. The NO/cGMP/PKG pathway's promotion of stem cell-like character in the tumor PVN may identify therapeutic targets for this subset of gliomas.

Comment in

PMID:
20144787
PMCID:
PMC3818090
DOI:
10.1016/j.stem.2010.01.001
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center