Format

Send to

Choose Destination
Biochemistry. 2010 Mar 16;49(10):2256-68. doi: 10.1021/bi902115v.

Polcalcin divalent ion-binding behavior and thermal stability: comparison of Bet v 4, Bra n 1, and Bra n 2 to Phl p 7.

Author information

1
Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. henzlm@missouri.edu

Abstract

Polcalcins are pollen-specific proteins containing two EF-hands. Atypically, the C-terminal EF-hand binding loop in Phl p 7 (from timothy grass) harbors five, rather than four, anionic side chains, due to replacement of the consensus serine at -x by aspartate. This arrangement has been shown to heighten parvalbumin Ca(2+) affinity. To determine whether Phl p 7 likewise exhibits anomalous divalent ion affinity, we have also characterized Bra n 1 and Bra n 2 (both from rapeseed) and Bet v 4 (from birch tree). Relative to Phl p 7, they exhibit N-terminal extensions of one, five, and seven residues, respectively. Interestingly, the divalent ion affinity of Phl p 7 is unexceptional. For example, at -17.84 +/- 0.13 kcal mol(-1), the overall standard free energy for Ca(2+) binding falls within the range observed for the other three proteins (-17.30 +/- 0.10 to -18.15 +/- 0.10 kcal mol(-1)). In further contrast to parvalbumin, replacement of the -x aspartate, via the D55S mutation, actually increases the overall Ca(2+) affinity of Phl p 7, to -18.17 +/- 0.13 kcal mol(-1). Ca(2+)-free Phl p 7 exhibits uncharacteristic thermal stability. Whereas wild-type Phl p 7 and the D55S variant denature at 77.3 and 78.0 degrees C, respectively, the other three polcalcins unfold between 56.1 and 57.9 degrees C. This stability reflects a low denaturational heat capacity increment. Phl p 7 and Phl p 7 D55S exhibit DeltaC(p) values of 0.34 and 0.32 kcal mol(-1) K(-1), respectively. The corresponding values for the other three polcalcins range from 0.66 to 0.95 kcal mol(-1) K(-1).

PMID:
20143814
DOI:
10.1021/bi902115v
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center