Send to

Choose Destination
Nat Struct Mol Biol. 2010 Mar;17(3):299-305. doi: 10.1038/nsmb.1754. Epub 2010 Feb 7.

Systematic identification of fragile sites via genome-wide location analysis of gamma-H2AX.

Author information

[1] Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. [2] These authors contributed equally to this work.


Phosphorylation of histone H2AX is an early response to DNA damage in eukaryotes. In Saccharomyces cerevisiae, DNA damage or replication-fork stalling results in phosphorylation of histone H2A yielding gamma-H2A (yeast gamma-H2AX) in a Mec1 (ATR)- and Tel1 (ATM)-dependent manner. Here, we describe the genome-wide location analysis of gamma-H2A as a strategy to identify loci prone to engaging the Mec1 and Tel1 pathways. Notably, gamma-H2A enrichment overlaps with loci prone to replication-fork stalling and is caused by the action of Mec1 and Tel1, indicating that these loci are prone to breakage. Moreover, about half the sites enriched for gamma-H2A map to repressed protein-coding genes, and histone deacetylases are necessary for formation of gamma-H2A at these loci. Finally, our work indicates that high-resolution mapping of gamma-H2AX is a fruitful route to map fragile sites in eukaryotic genomes.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center