Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochimie. 2010 May;92(5):491-8. doi: 10.1016/j.biochi.2010.01.009. Epub 2010 Feb 4.

Equilibrium and kinetics of the unfolding and refolding of Escherichia coli Malate Synthase G monitored by circular dichroism and fluorescence spectroscopy.

Author information

1
Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.

Abstract

The equilibrium and kinetics studies of an 82 kDa large monomeric Escherichia coli protein Malate Synthase G (MSG) was investigated by far and near-UV CD, intrinsic tryptophan fluorescence and extrinsic fluorescence spectroscopy. We find that despite of its large size, folding is reversible, in vitro. Equilibrium unfolding process of MSG exhibited three-state transition thus, indicating the presence of at least a stable equilibrium intermediate. Thermodynamic parameters suggest this intermediate resembles the unfolded state. However, the equilibrium intermediate exhibits pronounced secondary structure as measured by far-UV CD, partial tertiary structure as delineated by near-UV CD, compactness (m value) and exposed hydrophobic surface area as assessed by ANS binding, typically depicting a molten globule state. The stopped-flow kinetic data provide clear evidence for the presence of a burst phase during the refolding pathway due to the formation of an early Intermediate, within the dead time of the instrument. Refolding from 4 M to various lower concentrations until 0.4 M of GdnHCl follow biphasic kinetics at lower concentrations of GdnHCl (<0.8 M), whereas monophasic kinetics at concentrations above 1.5 M. Also, rollover in the refolding and unfolding limbs of chevron plot verifies the presence of a fast kinetic intermediate at lower concentration of GdnHCl. Based upon the above observations we hereby propose the folding pathway of a large multi-domain protein Malate Synthase G.

PMID:
20138106
DOI:
10.1016/j.biochi.2010.01.009
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center