Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2325-30. doi: 10.1073/pnas.0910059107. Epub 2010 Jan 19.

Task2 potassium channels set central respiratory CO2 and O2 sensitivity.

Author information

  • 1Department of Neurovegetative Physiology, Centre National de la Recherche Scientifique, Université Paul Cézanne, 13397 Marseille, France.


Task2 K(+) channel expression in the central nervous system is surprisingly restricted to a few brainstem nuclei, including the retrotrapezoid (RTN) region. All Task2-positive RTN neurons were lost in mice bearing a Phox2b mutation that causes the human congenital central hypoventilation syndrome. In plethysmography, Task2(-/-) mice showed disturbed chemosensory function with hypersensitivity to low CO(2) concentrations, leading to hyperventilation. Task2 probably is needed to stabilize the membrane potential of chemoreceptive cells. In addition, Task2(-/-) mice lost the long-term hypoxia-induced respiratory decrease whereas the acute carotid-body-mediated increase was maintained. The lack of anoxia-induced respiratory depression in the isolated brainstem-spinal cord preparation suggested a central origin of the phenotype. Task2 activation by reactive oxygen species generated during hypoxia could silence RTN neurons, thus contributing to respiratory depression. These data identify Task2 as a determinant of central O(2) chemoreception and demonstrate that this phenomenon is due to the activity of a small number of neurons located at the ventral medullary surface.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center