Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2437-42. doi: 10.1073/pnas.0910905106. Epub 2010 Jan 25.

The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome.

Author information

1
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Abstract

A hyperstable complex of the tetrameric MuA transposase with recombined DNA must be remodeled to allow subsequent DNA replication. ClpX, a AAA+ enzyme, fulfills this function by unfolding one transpososome subunit. Which MuA subunit is extracted, and how complex destabilization relates to establishment of the correct directionality (left to right) of Mu replication, is not known. Here, using altered-specificity MuA proteins/DNA sites, we demonstrate that transpososome destabilization requires preferential ClpX unfolding of either the catalytic-left or catalytic-right subunits, which make extensive intersubunit contacts in the tetramer. In contrast, ClpX recognizes the other two subunits in the tetramer much less efficiently, and their extraction does not substantially destabilize the complex. Thus, ClpX targets the most stable structural components of the complex. Left-end biased Mu replication is not, however, determined by ClpX's intrinsic subunit preference. The specific targeting of a stabilizing "keystone subunit" within a complex for unfolding is an attractive general mechanism for remodeling by AAA+ enzymes.

PMID:
20133746
PMCID:
PMC2823858
DOI:
10.1073/pnas.0910905106
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center