Send to

Choose Destination
Lab Chip. 2010 Feb 21;10(4):446-55. doi: 10.1039/b917763a. Epub 2010 Jan 5.

A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip.

Author information

Chemical and Biomolecular Engineering, Cornell University, USA.


Drug discovery is often impeded by the poor predictability of in vitro assays for drug toxicity. One primary reason for this observation is the inability to reproduce the pharmacokinetics (PK) of drugs in vitro. Mathematical models to predict the pharmacokinetics-pharmacodynamics (PK-PD) of drugs are available, but have several limitations, preventing broader application. A microscale cell culture analog (microCCA) is a microfluidic device based on a PK-PD model, where multiple cell culture chambers are connected with fluidic channels to mimic multi-organ interactions and test drug toxicity in a pharmacokinetic-based manner. One critical issue with microfluidics, including the microCCA, is that specialized techniques are required for assembly and operation, limiting its usability to non-experts. Here, we describe a novel design, with enhanced usability while allowing hydrogel-cell cultures of multiple types. Gravity-induced flow enables pumpless operation and prevents bubble formation. Three cell lines representing the liver, tumor and marrow were cultured in the three-chamber microCCA to test the toxicity of an anticancer drug, 5-fluorouracil. The result was analyzed with a PK-PD model of the device, and compared with the result in static conditions. Each cell type exhibited differential responses to 5-FU, and the responses in the microfluidic environment were different from those in static environment. Combination of a mathematical modeling approach (PK-PD modeling) and an in vitro experimental approach (microCCA) provides a novel platform with improved predictability for testing drug toxicity and can help researchers gain a better insight into the drug's mechanism of action.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Royal Society of Chemistry
Loading ...
Support Center