Format

Send to

Choose Destination
Phys Med Biol. 2010 Feb 21;55(4):1189-201. doi: 10.1088/0031-9155/55/4/019. Epub 2010 Feb 2.

Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography.

Author information

1
Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL 61801, USA.

Abstract

We present a new method for performing dynamic elastography of soft tissue samples. By sensing nanoscale displacements with optical coherence tomography, a chirped, modulated force is applied to acquire the mechanical spectrum of a tissue sample within a few seconds. This modulated force is applied via magnetic nanoparticles, named 'nanotransducers', which are diffused into the tissue, and which contribute negligible inertia to the soft tissue mechanical system. Using this novel system, we observed that excised tissues exhibit mechanical resonance modes which are well described by a linear damped harmonic oscillator. Results are validated by using cylindrical tissue phantoms of agarose in which resonant frequencies (30-400 Hz) are consistent with longitudinal modes and the sample boundary conditions. We furthermore show that the Young's modulus can be computed from their measured resonance frequencies, analogous to resonant ultrasound spectroscopy for stiff material analysis. Using this new technique, named magnetomotive resonant acoustic spectroscopy (MRAS), we monitored the relative stiffening of an excised rat liver during a chemical fixation process.

PMID:
20124653
PMCID:
PMC2883329
DOI:
10.1088/0031-9155/55/4/019
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for IOP Publishing Ltd. Icon for PubMed Central
Loading ...
Support Center