Format

Send to

Choose Destination
See comment in PubMed Commons below
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):749-63. doi: 10.1098/rstb.2009.0273.

The evolution, metabolism and functions of the apicoplast.

Author information

1
School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia.

Abstract

The malaria parasite, Plasmodium falciparum, harbours a relict plastid known as the 'apicoplast'. The discovery of the apicoplast ushered in an exciting new prospect for drug development against the parasite. The eubacterial ancestry of the organelle offers a wealth of opportunities for the development of therapeutic interventions. Morphological, biochemical and bioinformatic studies of the apicoplast have further reinforced its 'plant-like' characteristics and potential as a drug target. However, we are still not sure why the apicoplast is essential for the parasite's survival. This review explores the origins and metabolic functions of the apicoplast. In an attempt to decipher the role of the organelle within the parasite we also take a closer look at the transporters decorating the plastid to better understand the metabolic exchanges between the apicoplast and the rest of the parasite cell.

PMID:
20124342
PMCID:
PMC2817234
DOI:
10.1098/rstb.2009.0273
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center