Format

Send to

Choose Destination
See comment in PubMed Commons below
BMC Plant Biol. 2010 Feb 1;10:20. doi: 10.1186/1471-2229-10-20.

The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance.

Author information

1
INRA-Agrocampus Ouest-Université de Rennes 1, UMR 118 Amélioration des Plantes et Biotechnologies Végétales, F-35653, Le Rheu cedex, France.

Abstract

BACKGROUND:

GABA (gamma-aminobutyric acid) is a non protein amino acid that has been reported to accumulate in a number of plant species when subjected to high salinity and many other environmental constraints. However, no experimental data are to date available on the molecular function of GABA and the involvement of its metabolism in salt stress tolerance in higher plants. Here, we investigated the regulation of GABA metabolism in Arabidopsis thaliana at the metabolite, enzymatic activity and gene transcription levels upon NaCl stress.

RESULTS:

We identified the GABA transaminase (GABA-T), the first step of GABA catabolism, as the most responsive to NaCl. We further performed a functional analysis of the corresponding gene POP2 and demonstrated that the previously isolated loss-of-function pop2-1 mutant was oversensitive to ionic stress but not to osmotic stress suggesting a specific role in salt tolerance. NaCl oversensitivity was not associated with overaccumulation of Na+ and Cl- but mutant showed a slight decrease in K+. To bring insights into POP2 function, a promoter-reporter gene strategy was used and showed that POP2 was mainly expressed in roots under control conditions and was induced in primary root apex and aerial parts of plants in response to NaCl. Additionally, GC-MS- and UPLC-based metabolite profiling revealed major changes in roots of pop2-1 mutant upon NaCl stress including accumulation of amino acids and decrease in carbohydrates content.

CONCLUSIONS:

GABA metabolism was overall up-regulated in response to NaCl in Arabidopsis. Particularly, GABA-T was found to play a pivotal function and impairment of this step was responsible for a decrease in salt tolerance indicating that GABA catabolism was a determinant of Arabidopsis salt tolerance. GABA-T would act in salt responses in linking N and C metabolisms in roots.

PMID:
20122158
PMCID:
PMC2825238
DOI:
10.1186/1471-2229-10-20
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center