Send to

Choose Destination
Ecology. 2009 Dec;90(12):3489-502.

Nearshore larval retention in a region of strong upwelling and recruitment limitation.

Author information

Bodega Marine Laboratory, University of California, 2099 Westside Drive, Bodega Bay, California 94923-0247, USA.


The ability of miniscule larvae to control their fate and replenish populations in dynamic marine environments has been a long-running topic of debate of central importance for managing resources and understanding the ecology and evolution of life in the sea. Larvae are considered to be highly susceptible to offshore transport in productive upwelling regions, thereby increasing dispersal, limiting onshore recruitment, and reducing the intensity of community interactions. We show that 45 species of nearshore crustaceans were not transported far offshore in a recruitment-limited region characterized by strong upwelling. To the contrary, 92% of these larvae remained within 6 km from shore in high densities throughout development along two transects sampled four times during the peak upwelling season. Larvae of most species remained nearshore by remaining below a shallow Ekman layer of seaward-flowing surface waters throughout development. Larvae of other species migrated farther offshore by occurring closer to the surface early in development. Postlarvae evidently returned to nearshore adult habitats either by descending to shoreward-flowing upwelled waters or rising to the sea surface where they can be transported shoreward by wind relaxation events or internal waves. Thus wind-driven offshore transport should not limit recruitment, even in strong upwelling regions, and larvae are more likely to recruit closer to natal populations than is widely believed. This study poses a new challenge to determine the true cause and extent of recruitment limitation for a more diverse array of species along upwelling coasts, and thus to further advance our understanding of the connectivity, dynamics, and structure of coastal populations.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for eScholarship, California Digital Library, University of California
Loading ...
Support Center