Format

Send to

Choose Destination
See comment in PubMed Commons below
Toxicol Sci. 2010 May;115(1):22-33. doi: 10.1093/toxsci/kfq033. Epub 2010 Jan 30.

Wnt/beta-catenin signaling activates and determines hepatic zonal expression of glutathione S-transferases in mouse liver.

Author information

1
Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany.

Abstract

Glutathione S-transferases (GSTs) play an essential role in the elimination of xenobiotic-derived electrophilic metabolites and also catalyze certain steps in the conversion of endogenous molecules. Their expression is controlled by different transcription factors, such as the antioxidant-activated Nrf2 or the constitutive androstane receptor. Here, we show that the Wnt/beta-catenin pathway is also involved in the transcriptional regulation of GSTs: GSTm2, GSTm3, and GSTm6 are overexpressed in mouse hepatomas with activating Ctnnb1 (encoding beta-catenin) mutations and in transgenic hepatocytes expressing activated beta-catenin. Inversely, GSTm expression is reduced in mice with hepatocyte-specific knock out of Ctnnb1. Activation of beta-catenin-dependent signaling stimulates GSTm expression in vitro. Activation of beta-catenin in mouse hepatoma cells activates GSTm3 promoter-driven reporter activity, independently of beta-catenin/T-cell factor sites, via a retinoid X receptor-binding site. By contrast, GSTm expression is inhibited upon Ras activation in mouse liver tumors and transgenic hepatocytes. Recent studies by different groups have shown that beta-catenin-dependent signaling is involved in the transcriptional control of "perivenous" expression of various cytochrome P450s in mouse liver, whereas Ras signaling was hypothesized to antagonize the perivenous hepatocyte phenotype. In synopsis with our present results, it now appears that the Wnt/beta-catenin pathway functions as a master regulator of the expression of both phase I and phase II drug-metabolizing enzymes in perivenous hepatocytes from mouse liver.

PMID:
20118494
DOI:
10.1093/toxsci/kfq033
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center