Send to

Choose Destination
J Appl Physiol (1985). 2010 Jun;108(6):1803-11. doi: 10.1152/japplphysiol.01321.2009. Epub 2010 Jan 28.

Glia modulation of the extracellular milieu as a factor in central CO2 chemosensitivity and respiratory control.

Author information

Department of Biology, St. Lawrence University, Canton, NY 13617-1475, USA.


We discuss the influence of astrocytes on respiratory function, particularly central CO2 chemosensitivity. Fluorocitrate (FC) poisons astrocytes, and studies in intact animals using FC provide strong evidence that disrupting astrocytic function can influence CO2 chemosensitivity and ventilation. Gap junctions interconnect astrocytes and contribute to K+ homeostasis in the extracellular fluid (ECF). Blocking gap junctions alters respiratory control, but proof that this is truly an astrocytic effect is lacking. Intracellular pH regulation of astrocytes has reciprocal effects on extracellular pH. Electrogenic sodium-bicarbonate transport (NBCe) is present in astrocytes. The activity of NBCe alkalinizes intracellular pH and acidifies extracellular pH when activated by depolarization (and a subset of astrocytes are depolarized by hypercapnia). Thus, to the extent that astrocytic intracellular pH regulation during hypercapnia lowers extracellular pH, astrocytes will amplify the hypercapnic stimulus and may influence central chemosensitivity. However, the data so far provide only inferential support for this hypothesis. A lactate shuttle from astrocytes to neurons seems to be active in the retrotrapezoid nucleus (RTN) and important in setting the chemosensory stimulus in the RTN (and possibly other chemosensory nuclei). Thus astrocytic processes, so vital in controlling the constituents of the ECF in the central nervous system, may profoundly influence central CO2 chemosensitivity and respiratory control.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center