Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuropharmacology. 2010 Jun;58(7):951-61. doi: 10.1016/j.neuropharm.2010.01.008. Epub 2010 Jan 21.

Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum.

Author information

1
Laboratory for Integrative Neuroscience, NIAAA/NIH, 5625 Fishers Lane, Rockville, MD 20852, USA. lovindav@mail.nih.gov

Abstract

The dorsal striatum is a large forebrain region involved in action initiation, timing, control, learning and memory. Learning and remembering skilled movement sequences requires the dorsal striatum, and striatal subregions participate in both goal-directed (action-outcome) and habitual (stimulus-response) learning. Modulation of synaptic transmission plays a large part in controlling input to as well as the output from striatal medium spiny projection neurons (MSNs). Synapses in this brain region are subject to short-term modulation, including allosteric alterations in ion channel function and prominent presynaptic inhibition. Two forms of long-term synaptic plasticity have also been observed in striatum, long-term potentiation (LTP) and long-term depression (LTD). LTP at glutamatergic synapses onto MSNs involves activation of NMDA-type glutamate receptors and D1 dopamine or A2A adenosine receptors. Expression of LTP appears to involve postsynaptic mechanisms. LTD at glutamatergic synapses involves retrograde endocannabinoid signaling stimulated by activation of metabotropic glutamate receptors (mGluRs) and D2 dopamine receptors. While postsynaptic mechanisms participate in LTD induction, maintained expression involves presynaptic mechanisms. A similar form of LTD has also been observed at GABAergic synapses onto MSNs. Studies have just begun to examine the roles of synaptic plasticity in striatal-based learning. Findings to date indicate that molecules implicated in induction of plasticity participate in these forms of learning. Neurotransmitter receptors involved in LTP induction are necessary for proper skill and goal-directed instrumental learning. Interestingly, receptors involved in LTP and LTD at glutamatergic synapses onto MSNs of the "indirect pathway" appear to have important roles in habit learning. More work is needed to reveal if and when synaptic plasticity occurs during learning and if so what molecules and cellular processes, both short- and long-term, contribute to this plasticity.

PMID:
20096294
PMCID:
PMC2849868
DOI:
10.1016/j.neuropharm.2010.01.008
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center