Send to

Choose Destination
Glycobiology. 2010 May;20(5):553-66. doi: 10.1093/glycob/cwp207. Epub 2010 Jan 18.

Sialic acids in different Leishmania sp., its correlation with nitric oxide resistance and host responses.

Author information

Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research (C.S.I.R.), Govt. of India, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata-700 032, India.


The presence of different derivatives of sialic acids (SA) on Leishmania donovani instigated us to investigate their status on different strains of Leishmania sp. causing different forms of the disease. Leishmania tropica (K27), Leishmania major (JISH118) and Leishmania mexicana (LV4) responsible for cutaneous, Leishmania braziliensis (L280) and Leishmania amazonensis (LV81) causing diffuse and Leishmania infantum (MON29) responsible for visceral leishmaniasis were included in this study. The strains showed a differential distribution of SA in spite of their close resemblance in pathogenesis. K27, JISH118, L280 and MON29 were categorized as high SA-containing strains having enhanced 9-O-acetyl sialic acid (9-O-AcSA(high)) whereas LV4 and LV81 evidenced considerably reduced SA. Interestingly, 9-O-AcSA(high) promastigotes showed significant viability as compared to their de-O-acetylated forms after exposure to NaNO(2) suggesting the involvement of 9-O-AcSA in conferring nitric oxide (NO) resistance. Enhanced intracellular survivability was demonstrated following infection of human macrophages with 9-O-AcSA(high) promastigotes in contrast to their de-O-acetylated forms indicating their contribution in bestowing a survival benefit. Additionally, reduced accumulation of NO, interleukin-12 and interferon-gamma in the supernatant of macrophages infected with 9-O-AcSA(high) promastigotes indicated suppression of leishmanicidal host responses. However, LV4 and LV81 with least 9-O-AcSA, before and after de-O-acetylation, showed unaltered NO resistance, multiplicity and host responses signifying the probable involvement of other determinants which may be a function of their inherent parasitic attribute. Hence, enhanced levels of 9-O-AcSA serve as one of the potential determinants responsible for increased NO resistance and survivability of parasites by inhibition of host responses.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center