Format

Send to

Choose Destination
Electrophoresis. 2010 Jan;31(2):279-86. doi: 10.1002/elps.200900505.

Thermophoresis of single stranded DNA.

Author information

1
Department of Physics, Systems Biophysics, Center for Nanoscience, Ludwig Maximilians Universität München, München, Germany.

Abstract

The manipulation and analysis of biomolecules in native bulk solution is highly desired; however, few methods are available. In thermophoresis, the thermal analog to electrophoresis, molecules are moved along a microscopic temperature gradient. Its theoretical foundation is still under debate, but practical applications for analytics in biology show considerable potential. Here we measured the thermophoresis of highly diluted single stranded DNA using an all-optical capillary approach. Temperature gradients were created locally by an infrared laser. The thermal depletion of oligonucleotides of between 5 and 50 bases in length were investigated by fluorescence at various salt concentrations. To a good approximation, the previously tested capacitor model describes thermophoresis: the Soret coefficient linearly depends on the Debye length and is proportional to the DNA length to the power of 0.35, dictated by the conformation-based size scaling of the diffusion coefficient. The results form the basis for quantitative DNA analytics using thermophoresis.

PMID:
20084627
DOI:
10.1002/elps.200900505
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center