Format

Send to

Choose Destination
Vasc Dis Prev. 2009 Jan 1;6:122-130.

Vasculoprotective Effects of Apolipoprotein Mimetic Peptides: An Evolving Paradigm In Hdl Therapy (Vascular Disease Prevention, In Press.).

Author information

1
Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL.

Abstract

Anti-atherogenic effects of high density lipoprotein (HDL) and its major protein component apolipoprotein A-I (apoA-I) are principally thought to be due to their ability to mediate reverse cholesterol transport. These agents also possess anti-oxidant properties that prevent the oxidative modification of low density lipoprotein (LDL) and anti-inflammatory properties that include inhibition of endothelial cell adhesion molecule expression. Results of the Framingham study revealed that a reduction in HDL levels is an independent risk factor for coronary artery disease (CAD). Accordingly, there has been considerable interest in developing new therapies that specifically elevate HDL cholesterol. However, recent evidence suggests that increasing circulating HDL cholesterol levels alone is not sufficient as a mode of HDL therapy. Rather, therapeutic approaches that increase the functional properties of HDL may be superior to simply raising the levels of HDL per se. Our laboratory has pioneered the development of synthetic, apolipoprotein mimetic peptides which are structurally and functionally similar to apoA-I but possess unique structural homology to the lipid-associating domains of apoA-I. The apoA-I mimetic peptide 4F inhibits atherogenic lesion formation in murine models of atherosclerosis. This effect is related to the ability of 4F to induce the formation of pre-β HDL particles that are enriched in apoA-I and paraoxonase. 4F also possesses anti-inflammatory and anti-oxidant properties that are independent of its effect on HDL quality per se. Recent studies suggest that 4F stimulates the expression of the antioxidant enzymes heme oxygenase and superoxide dismutase and inhibits superoxide anion formation in blood vessels of diabetic, hypercholesterolemic and sickle cell disease mice. The goal of this review is to discuss HDL-dependent and -independent mechanisms by which apoA-I mimetic peptides reduce vascular injury in experimental animal models.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center