Format

Send to

Choose Destination
Virol J. 2010 Jan 18;7:9. doi: 10.1186/1743-422X-7-9.

An M2e-based multiple antigenic peptide vaccine protects mice from lethal challenge with divergent H5N1 influenza viruses.

Author information

1
State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.

Abstract

BACKGROUND:

A growing concern has raised regarding the pandemic potential of the highly pathogenic avian influenza (HPAI) H5N1 viruses. Consequently, there is an urgent need to develop an effective and safe vaccine against the divergent H5N1 influenza viruses. In the present study, we designed a tetra-branched multiple antigenic peptide (MAP)-based vaccine, designated M2e-MAP, which contains the sequence overlapping the highly conserved extracellular domain of matrix protein 2 (M2e) of a HPAI H5N1 virus, and investigated its immune responses and cross-protection against different clades of H5N1 viruses.

RESULTS:

Our results showed that M2e-MAP vaccine induced strong M2e-specific IgG antibody responses following 3-dose immunization of mice with M2e-MAP in the presence of Freunds' or aluminium (alum) adjuvant. M2e-MAP vaccination limited viral replication and attenuated histopathological damage in the challenged mouse lungs. The M2e-MAP-based vaccine protected immunized mice against both clade1: VN/1194 and clade2.3.4: SZ/406H H5N1 virus challenge, being able to counteract weight lost and elevate survival rate following lethal challenge of H5N1 viruses.

CONCLUSIONS:

These results suggest that M2e-MAP presenting M2e of H5N1 virus has a great potential to be developed into an effective subunit vaccine for the prevention of infection by a broad spectrum of HPAI H5N1 viruses.

PMID:
20082709
PMCID:
PMC2823673
DOI:
10.1186/1743-422X-7-9
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center