Format

Send to

Choose Destination
Nat Biotechnol. 2010 Feb;28(2):161-6. doi: 10.1038/nbt.1605. Epub 2010 Jan 17.

Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent.

Author information

1
Howard Hughes Medical Institute, Ansary Stem Cell Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA.

Abstract

Previous efforts to differentiate human embryonic stem cells (hESCs) into endothelial cells have not achieved sustained expansion and stability of vascular cells. To define vasculogenic developmental pathways and enhance differentiation, we used an endothelial cell-specific VE-cadherin promoter driving green fluorescent protein (GFP) (hVPr-GFP) to screen for factors that promote vascular commitment. In phase 1 of our method, inhibition of transforming growth factor (TGF)beta at day 7 of differentiation increases hVPr-GFP(+) cells by tenfold. In phase 2, TGFbeta inhibition maintains the proliferation and vascular identity of purified endothelial cells, resulting in a net 36-fold expansion of endothelial cells in homogenous monolayers, which exhibited a transcriptional profile of Id1(high)VEGFR2(high)VE-cadherin(+) ephrinB2(+). Using an Id1-YFP hESC reporter line, we showed that TGFbeta inhibition sustains Id1 expression in hESC-derived endothelial cells and that Id1 is required for increased proliferation and preservation of endothelial cell commitment. Our approach provides a serum-free method for differentiation and long-term maintenance of hESC-derived endothelial cells at a scale relevant to clinical application.

PMID:
20081865
PMCID:
PMC2931334
DOI:
10.1038/nbt.1605
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Secondary source ID, Grant support

Publication types

MeSH terms

Substances

Secondary source ID

Grant support

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center