Format

Send to

Choose Destination
Neuroscience. 2010 Mar 31;166(3):852-63. doi: 10.1016/j.neuroscience.2010.01.007. Epub 2010 Jan 18.

Gene expression profiling in the developing rat brain exposed to ketamine.

Author information

1
Division of Systems Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.

Abstract

Ketamine, a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, is associated with accelerated neuronal apoptosis in the developing rodent brain. In this study, postnatal day (PND) 7 rats were treated with 20 mg/kg ketamine or saline in six successive doses (s.c.) at 2-h intervals. Brain frontal cortical areas were collected 6 h after the last dose and RNA isolated and hybridized to Illumina Rat Ref-12 Expression BeadChips containing 22,226 probes. Many of the differentially expressed genes were associated with cell death or differentiation and receptor activity. Ingenuity Pathway Analysis software identified perturbations in NMDA-type glutamate, GABA and dopamine receptor signaling. Quantitative polymerase chain reaction (Q-PCR) confirmed that NMDA receptor subunits were significantly up-regulated. Up-regulation of NMDA receptor mRNA signaling was further confirmed by in situ hybridization. These observations support our working hypothesis that prolonged ketamine exposure produces up-regulation of NMDA receptors and subsequent over-stimulation of the glutamatergic system by endogenous glutamate, triggering enhanced apoptosis in developing neurons.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center