Format

Send to

Choose Destination
J Mol Biol. 2010 Mar 19;397(1):119-43. doi: 10.1016/j.jmb.2010.01.011. Epub 2010 Jan 11.

Comparative genomic analysis of 60 Mycobacteriophage genomes: genome clustering, gene acquisition, and gene size.

Author information

1
Department of Biological Sciences, Pittsburgh Bacteriophage Institute, Pittsburgh, PA 15260, USA. gfh@pitt.edu

Abstract

Mycobacteriophages are viruses that infect mycobacterial hosts. Expansion of a collection of sequenced phage genomes to a total of 60-all infecting a common bacterial host-provides further insight into their diversity and evolution. Of the 60 phage genomes, 55 can be grouped into nine clusters according to their nucleotide sequence similarities, 5 of which can be further divided into subclusters; 5 genomes do not cluster with other phages. The sequence diversity between genomes within a cluster varies greatly; for example, the 6 genomes in Cluster D share more than 97.5% average nucleotide similarity with one another. In contrast, similarity between the 2 genomes in Cluster I is barely detectable by diagonal plot analysis. In total, 6858 predicted open-reading frames have been grouped into 1523 phamilies (phams) of related sequences, 46% of which possess only a single member. Only 18.8% of the phams have sequence similarity to non-mycobacteriophage database entries, and fewer than 10% of all phams can be assigned functions based on database searching or synteny. Genome clustering facilitates the identification of genes that are in greatest genetic flux and are more likely to have been exchanged horizontally in relatively recent evolutionary time. Although mycobacteriophage genes exhibit a smaller average size than genes of their host (205 residues compared with 315), phage genes in higher flux average only 100 amino acids, suggesting that the primary units of genetic exchange correspond to single protein domains.

PMID:
20064525
PMCID:
PMC2830324
DOI:
10.1016/j.jmb.2010.01.011
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substance, Secondary source ID, Grant support

Publication types

MeSH terms

Substance

Secondary source ID

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center