Send to

Choose Destination
Prostate. 2010 May 15;70(7):745-54. doi: 10.1002/pros.21107.

Prolonged treatment with bicalutamide induces androgen receptor overexpression and androgen hypersensitivity.

Author information

Pharmaceutical Research Department 2, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan.



Various hormone refractory prostate cancer cell models have been established with androgen depletion and have helped to clarify the mechanism for the transition into androgen-depletion independent status. However, the mechanism of bicalutamide resistance remains unclear because few cell models have been generated.


We generated a bicalutamide-resistant subline, LNCaP-BC2, from LNCaP after prolonged treatment with bicalutamide. Androgen and/or bicalutamide responsiveness for proliferation and prostate-specific antigen (PSA) secretion were examined in vitro and in vivo. Testosterone and dihydrotestosterone (DHT) levels in xenografted tumors were analyzed by liquid chromatography-tandem mass spectrometry. Androgen receptor (AR) gene mutation and amplification and AR and pAR(210) expression were determined.


LNCaP-BC2 did not grow in an androgen-depleted medium and proliferation was stimulated in a tenfold lower concentration of androgen than that of LNCaP. LNCaP-BC2 grew in castrated male mice, and the DHT level in grafted LNCaP-BC2 tumors was 7.7-fold lower than in LNCaP tumors. Bicalutamide stimulated LNCaP-BC2 proliferation and PSA secretion in vitro and the antitumor activity of bicalutamide against LNCaP-BC2 was weaker than that of LNCaP in vivo. Additional AR mutation and AR gene amplification were not detected in LNCaP-BC2, but AR and pAR(210) expression and PSA secretion in LNCaP-BC2 were higher than in LNCaP.


Bicalutamide-resistant LNCaP-BC2 exhibited AR overexpression and hypersensitivity to low levels of androgen. Our data suggests that AR overexpression is a significant mechanism of bicalutamide resistance similar to resistance from chronic androgen depletion. In addition, pAR(210) overexpression could be a potential mechanism for hypersensitivity to low androgen in LNCaP-BC2.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center