Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2010 Feb 16;49(6):1281-9. doi: 10.1021/bi902001a.

Mechanism and inhibition of the FabV enoyl-ACP reductase from Burkholderia mallei.

Author information

  • 1Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA.


Enoyl-ACP reductases catalyze the final step in the elongation cycle of the bacterial fatty acid biosynthesis (FAS-II) pathway. At present, four distinct enoyl-ACP reductases have been identified, which are the products of the fabI, fabL, fabK, and fabV genes. The FabV enoyl-ACP reductase is the most recent member of this enzyme class and was originally identified in Vibrio cholerae by Cronan and co-workers [Massengo-Tiasse, R. P., and Cronan, J. E. (2008) Vibrio cholerae FabV defines a new class of enoyl-acyl carrier protein reductase. J. Biol. Chem. 283, 1308-1316]. In this work, a detailed kinetic analysis of the mechanism of the FabV enzyme from Burkholderia mallei (bmFabV) has been undertaken, which reveals that bmFabV catalyzes a sequential bi-bi mechanism with NADH binding first and NAD(+) dissociating last. The enzyme is a member of the short chain dehydrogenase/reductase superfamily in which the catalytic tyrosine (Y235) and lysine (K244) residues are organized in the consensus Tyr-(Xaa)(8)-Lys motif. The role of these active site residues has been investigated using site-directed mutagenesis which has shown that both Y235 and K244 are involved in acid-base chemistry during substrate reduction. Sequence alignment and site-directed mutagenesis also identify a second lysine in the active site (K245) that has an important role in binding of the enoyl substrate. Because of interests in developing inhibitors of bmFabV, a detailed analysis of the inhibition of the enzyme by triclosan has been conducted showing that triclosan is a competitive inhibitor with respect to NADH and an uncompetitive inhibitor with respect to the substrate 2-dodecenoyl-CoA (K(i) = 0.4 muM). In combination with fluorescence binding experiments, we conclude that triclosan binds to the enzyme-NAD(+) product complex which is in rapid and reversible equilibrium with other intermediates on the reaction pathway.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center