Send to

Choose Destination
Hum Mol Genet. 2010 Mar 15;19(6):1108-18. doi: 10.1093/hmg/ddp583. Epub 2010 Jan 6.

Suppression of Ca2+ signaling in a mouse model of Best disease.

Author information

Department of Ophthalmology and Vision Science, University of Arizona, 655 N. Alvernon Way, Suite 108, Tucson, AZ 85711, USA.


Mutations in BEST1, encoding bestrophin-1 (Best1), cause Best vitelliform macular dystrophy (BVMD), a dominantly inherited macular degeneration characterized by a diminished electrooculogram light peak (LP), lipofuscin in retinal pigment epithelial cells (RPE), and fluid- and debris-filled retinal detachments. To understand the pathogenesis of BVMD we generated knock-in mice carrying the BVMD-causing mutation W93C in Best1. Both Best1(+/W93C)and Best1(W93C/W93C) mice had normal ERG a- and b-waves, but exhibited an altered LP luminance response reminiscent of that observed in BVMD patients. Morphological analysis identified fluid- and debris-filled retinal detachments in mice as young as 6 months of age. By 18-24 months of age Best1(+/W93C)and Best1(W93C/W93C) mice exhibited enhanced accumulation of lipofuscin in the RPE, and a significant deposition of debris composed of unphagocytosed photoreceptor outer segments and lipofuscin granules in the subretinal space. Although Best1 is thought to function as a Ca(2+)-activated Cl(-) channel, RPE cells from Best1(W93C) mice exhibited normal Cl(-) conductances. We have previously shown that Best1(-/-) mice exhibit increased [Ca(2+)](i) in response to ATP stimulation. However, ATP-stimulated changes in [Ca(2+)](i) in RPE cells from Best1(+/W93C) and Best1(W93C/W93C) mice were suppressed relative to Best1(+/+) littermates. Based on these data we conclude that mice carrying the Best1(W93C) mutation are a valid model for BVMD. Furthermore, these data suggest that BVMD is not because of Best1 deficiency, as the phenotypes of Best1(+/W93C) and Best1(W93C/W93C) mice are distinct from that of Best1(-/-) mice with regard to lipofuscin accumulation, and changes in the LP and ATP Ca(2+) responses.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center