Format

Send to

Choose Destination
BMC Bioinformatics. 2010 Jan 6;11:9. doi: 10.1186/1471-2105-11-9.

PyMix--the python mixture package--a tool for clustering of heterogeneous biological data.

Author information

1
Max Planck Institute for Molecular Genetics, Dept, of Computational Molecular Biology, Ihnestrasse 73, 14195 Berlin. bgeorgi@mail.med.upenn.edu

Abstract

BACKGROUND:

Cluster analysis is an important technique for the exploratory analysis of biological data. Such data is often high-dimensional, inherently noisy and contains outliers. This makes clustering challenging. Mixtures are versatile and powerful statistical models which perform robustly for clustering in the presence of noise and have been successfully applied in a wide range of applications.

RESULTS:

PyMix - the Python mixture package implements algorithms and data structures for clustering with basic and advanced mixture models. The advanced models include context-specific independence mixtures, mixtures of dependence trees and semi-supervised learning. PyMix is licenced under the GNU General Public licence (GPL). PyMix has been successfully used for the analysis of biological sequence, complex disease and gene expression data.

CONCLUSIONS:

PyMix is a useful tool for cluster analysis of biological data. Due to the general nature of the framework, PyMix can be applied to a wide range of applications and data sets.

PMID:
20053276
PMCID:
PMC2823712
DOI:
10.1186/1471-2105-11-9
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center