Format

Send to

Choose Destination
See comment in PubMed Commons below
Int J Data Min Bioinform. 2009;3(4):382-97.

Logistic ensembles of Random Spherical Linear Oracles for microarray classification.

Author information

1
Center for Biostatistics, The Methodist Hospital Research Institute, Houston, TX 77030, USA. lepeterson@tmhs.org

Abstract

Random Spherical Linear Oracles (RSLO) for DNA microarray gene expression data are proposed for classifier fusion. RSLO employs random hyperplane splits of samples in the principal component score space based on the first three principal components (X, Y, Z) of the input feature set. Hyperplane splits are used to assign training(testing) samples to separate logistic regression mini-classifiers, which increases the diversity of voting results since errors are not shared across mini-classifiers. We recommend use of RSLO with 3-4 10-fold CV and re-partitioning samples randomly every ten iterations prior to each 10-fold CV. This equates to a total of 30-40 iterations.

PMID:
20052903
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center