Send to

Choose Destination
See comment in PubMed Commons below
Acc Chem Res. 2010 Jun 15;43(6):826-36. doi: 10.1021/ar900195d.

Structural examination of easel paintings with optical coherence tomography.

Author information

  • 1Institute of Physics, Nicolaus Copernicus University, ul. Grudziadzka 5, 87-100 Toruń, Poland.


Identification of the order, thickness, composition, and possibly the origin of the paint layers forming the structure of a painting, that is, its stratigraphy, is important in confirming its attribution and history as well as planning conservation treatments. The most common method of examination is analysis of a sample collected from the art object, both visually with a microscope and instrumentally through a variety of sophisticated, modern analytical tools. Because of its invasiveness, however, sampling is less than ideally compatible with conservation ethics; it is severely restricted with respect to the amount of material extirpated from the artwork. Sampling is also rather limited in that it provides only very local information. There is, therefore, a great need for a noninvasive method with sufficient in-depth resolution for resolving the stratigraphy of works of art. Optical coherence tomography (OCT) is a noninvasive, noncontact method of optical sectioning of partially transparent objects, with micrometer-level axial resolution. The method utilizes near-infrared light of low intensity (a few milliwatts) to obtain cross-sectional images of various objects; it has been mostly used in medical diagnostics. Through the serial collection of many such images, volume information may be extracted. The application of OCT to the examination of art objects has been in development since 2003. In this Account, we present a short introduction to the technique, briefly discuss the apparatus we use, and provide a paradigm for reading OCT tomograms. Unlike the majority of papers published previously, this Account focuses on one, very specific, use of OCT. We then consider two examples of successful, practical application of the technique. At the request of a conservation studio, the characteristics of inscriptions on two oil paintings, originating from the 18th and 19th centuries, were analyzed. In the first case, it was possible to resolve some questions concerning the history of the work. From an analysis of the positions of the paint layers involved in three inscriptions in relation to other strata of the painting, the order of events in its history was resolved. It was evident that the original text had been overpainted and that the other inscriptions were added later, thus providing convincing evidence as to the painting's true date of creation. In the second example, a painting was analyzed with the aim of confirming the possibility of forgery of the artist's signature, and evidence strongly supporting this supposition is presented. These two specific examples of successful use of the technique on paintings further demonstrate how OCT may be readily adaptable to other similar tasks, such as in the fields of forensic or materials science. In a synergistic approach, in which information is obtained with a variety of noninvasive techniques, OCT is demonstrably effective and offers great potential for further development.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center