Send to

Choose Destination
Cancer Res. 2010 Jan 1;70(1):150-9. doi: 10.1158/0008-5472.CAN-09-1449. Epub 2009 Dec 22.

Proapoptotic activity of bortezomib in gastrointestinal stromal tumor cells.

Author information

Sarcoma Center, West German Cancer Center, University of Essen Medical School, Essen, Germany.


Gastrointestinal stromal tumors (GIST) are caused by activating mutations in the KIT or PDGFRA receptor tyrosine kinase genes. Although >85% of GIST patients treated with the small-molecule inhibitor imatinib mesylate (Gleevec) achieve disease stabilization, complete remissions are rare and a substantial proportion of patients develop resistance to imatinib over time. Upregulation of soluble, non-chromatin-bound histone H2AX has an important role in imatinib-induced apoptosis of GIST cells. Additionally, H2AX levels in untreated GIST are maintained at low levels by a pathway that involves KIT, phosphoinositide 3-kinase, and the ubiquitin-proteasome system. In this study, we asked whether bortezomib-mediated inhibition of the ubiquitin-proteasome machinery could lead to upregulation of histone H2AX and GIST cell death. We show that bortezomib rapidly triggers apoptosis in GIST cells through a combination of mechanisms involving H2AX upregulation and loss of KIT protein expression. Downregulation of KIT transcription was an underlying mechanism for bortezomib-mediated inhibition of KIT expression. In contrast, the nuclear factor-kappaB signaling pathway did not seem to play a major role in bortezomib-induced GIST cell death. Significantly, we found that bortezomib would induce apoptosis in two imatinib-resistant GIST cell lines as well as a short-term culture established from a primary imatinib-resistant GIST. Collectively, our results provide a rationale to test the efficacy of bortezomib in GIST patients with imatinib-sensitive or -resistant tumors.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center