Format

Send to

Choose Destination
See comment in PubMed Commons below
Hum Mutat. 2010 Feb;31(2):E1163-74. doi: 10.1002/humu.21184.

Pathogenic mutations cause rapid degradation of lysosomal storage disease-related membrane protein CLN6.

Author information

1
Department of Biochemistry, Children's Hospital, University Hospital Hamburg-Eppendorf, Hamburg, Germany.

Abstract

One variant form of late infantile neuronal ceroid lipofuscinosis is an autosomal recessive inherited neurodegenerative lysosomal storage disorder caused by mutations in the CLN6gene. The function of the polytopic CLN6 membrane protein localized in the endoplasmic reticulum is unknown. Here we report on expression studies of three mutations (c.368G>A, c.460-462delATC, c.316insC) found in CLN6 patients predicted to affect transmembrane domain 3 (p.Gly123Asp), cytoplasmic loop 2 (p.Ile154del) or result in a truncated membrane protein (p.Arg106ProfsX26), respectively. The rate of synthesis and the stability of the mutant CLN6 proteins are reduced in a mutation-dependent manner. None of the mutations prevented the dimerization of the CLN6 polypeptides. The particularly rapid degradation of the p.Arg106ProfsX26 mutant which is identical with the mutation in the murine orthologue Cln6 gene in the nclf mouse model of the disease, can be strongly inhibited by proteasomal and partially by lysosomal protease inhibitors. Both degradative pathways seem to be sufficient to prevent the accumulation/aggregation of the mutant CLN6 polypeptides in the endoplasmic reticulum.

PMID:
20020536
DOI:
10.1002/humu.21184
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center