Format

Send to

Choose Destination
Carcinogenesis. 2010 Mar;31(3):402-10. doi: 10.1093/carcin/bgp318. Epub 2009 Dec 16.

Human papillomavirus type 16 E5 protein inhibits hydrogen-peroxide-induced apoptosis by stimulating ubiquitin-proteasome-mediated degradation of Bax in human cervical cancer cells.

Author information

1
Interdisciplinary Graduate Program in Tumor Biology, Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Jongno-gu, Seoul 110-799, Korea.

Abstract

To investigate the mechanism by which the human papillomavirus (HPV) E5 protein contributes to the carcinogenesis of uterine cervical cancer, we studied the effect of HPV E5 on apoptosis of cervical cancer cells and its underlying mechanism. Expression of HPV16 E5 protein inhibited hydrogen peroxide-induced apoptosis in C-33A cervical cancer cells. E5 decreased the expression of Bax protein, and exogenous expression of Bax abolished the anti-apoptotic effect of E5. Knockdown of E5 by small interfering RNA sensitized CaSki cervical cancer cells to hydrogen peroxide-induced apoptosis with concurrent increase in Bax expression. Transient expression of E5 significantly increased the degradation rate of Bax protein by inducing the ubiquitination. The E5-induced decrease in Bax expression was inhibited by a cyclooxygenase-2 (COX-2) inhibitor, prostaglandin E2 (PGE(2)) receptor antagonists and cyclic adenosine monophosphate-dependent protein kinase (PKA) inhibitor. Treatment with PGE(2) decreased the expression of Bax and inhibited hydrogen peroxide-induced apoptosis of C-33A cells. We concluded that HPV16 E5 protein inhibits hydrogen peroxide-induced apoptosis of cervical cancer cells by stimulating the ubiquitin-proteasome-mediated degradation of Bax protein, and the pathway involves COX-2, PGE(2) and PKA. This finding suggests the possibility that HPV 16 E5 protein contributes to cervical carcinogenesis by inhibiting apoptosis of transformed cervical epithelial cells.

PMID:
20015862
DOI:
10.1093/carcin/bgp318
[Indexed for MEDLINE]

Publication type, MeSH terms, Substances

Publication type

MeSH terms

Substances

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center