Send to

Choose Destination
J Biomech. 2010 Mar 22;43(5):893-9. doi: 10.1016/j.jbiomech.2009.11.008. Epub 2009 Dec 16.

Joint moment contributions to swing knee extension acceleration during gait in children with spastic hemiplegic cerebral palsy.

Author information

Department of Orthopaedic Surgery, University of California at Los Angeles, 1000 Veteran Ave, 22-64 Rehabilitation Center, Los Angeles, CA 90095-1795, USA.


Inadequate peak knee extension during the swing phase of gait is a major deficit in individuals with spastic cerebral palsy (CP). The biomechanical mechanisms responsible for knee extension have not been thoroughly examined in CP. The purpose of this study was to assess the contributions of joint moments and gravity to knee extension acceleration during swing in children with spastic hemiplegic CP. Six children with spastic hemiplegic CP were recruited (age=13.4+/-4.8 years). Gait data were collected using an eight-camera system. Induced acceleration analysis was performed for each limb during swing. Average joint moment and gravity contributions to swing knee extension acceleration were calculated. Total swing and stance joint moment contributions were compared between the hemiplegic and non-hemiplegic limbs using paired t-tests (p<0.05). Swing limb joint moment contributions from the hemiplegic limb decelerated swing knee extension significantly more than those of the non-hemiplegic limb and resulted in significantly reduced knee extension acceleration. Total stance limb joint moment contributions were not statistically different. Swing limb joint moment contributions that decelerated knee extension appeared to be the primary cause of inadequate knee extension acceleration during swing. Stance limb muscle strength did not appear to be the limiting factor in achieving adequate knee extension in children with CP. Recent research has shown that the ability to extend the knee during swing is dependent on the selective voluntary motor control of the limb. Data from individual participants support this concept.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center