Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2010 Feb;76(3):931-5. doi: 10.1128/AEM.01336-09. Epub 2009 Dec 11.

Physiological versatility of the extremely thermoacidophilic archaeon Metallosphaera sedula supported by transcriptomic analysis of heterotrophic, autotrophic, and mixotrophic growth.

Author information

1
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.

Abstract

Comparative transcriptomic analysis of autotrophic, heterotrophic, and mixotrophic growth of the archaeon Metallosphaera sedula (70 degrees C, pH 2.0) revealed candidates for yet-to-be-confirmed components of the 3-hydroxypropionate/4-hydroxybutyrate pathway and implicated a membrane-bound hydrogenase (Msed_0944-Msed_0946) for growth on H(2). Routes for generation of ATP and reducing equivalents were also identified.

PMID:
20008169
PMCID:
PMC2813022
DOI:
10.1128/AEM.01336-09
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center