Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2010 Feb 12;285(7):4771-80. doi: 10.1074/jbc.M109.060095. Epub 2009 Dec 10.

Degradation of some polyubiquitinated proteins requires an intrinsic proteasomal binding element in the substrates.

Author information

  • 1Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA.

Abstract

Lysine 48-linked polyubiquitin chains usually target proteins for 26 S proteasomal degradation; however, this modification is not a warrant for destruction. Here, we found that efficient degradation of a physiological substrate UbcH10 requires not only an exogenous polyubiquitin chain modification but also its unstructured N-terminal region. Interestingly, the unstructured N-terminal region of UbcH10 directly binds the 19 S regulatory complex of the 26 S proteasome, and it mediates the initiation of substrate translocation. To promote ubiquitin-dependent degradation of the folded domains of UbcH10, its N-terminal region can be displaced by exogenous proteasomal binding elements. Moreover, the unstructured N-terminal region can initiate substrate translocation even when UbcH10 is artificially cyclized without a free terminus. Polyubiquitinated circular UbcH10 is completely degraded by the 26 S proteasome. Accordingly, we propose that degradation of some polyubiquitinated proteins requires two binding interactions: a polyubiquitin chain and an intrinsic proteasomal binding element in the substrates (likely an unstructured region); moreover, the intrinsic proteasomal binding element initiates substrate translocation regardless of its location in the substrates.

PMID:
20007692
PMCID:
PMC2836082
DOI:
10.1074/jbc.M109.060095
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center