Format

Send to

Choose Destination
Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5563-6. doi: 10.1109/IEMBS.2009.5333737.

Patient motion tracking in the presence of measurement errors.

Author information

1
Dept. of Control Engineering and Information Tech.-Lab. for Biomedical Engineering, The Budapest University of Technology and Economics, Budapest, Hungary. haidegger@iit.bme.hu

Abstract

The primary aim of computer-integrated surgical systems is to provide physicians with superior surgical tools for better patient outcome. Robotic technology is capable of both minimally invasive surgery and microsurgery, offering remarkable advantages for the surgeon and the patient. Current systems allow for sub-millimeter intraoperative spatial positioning, however certain limitations still remain. Measurement noise and unintended changes in the operating room environment can result in major errors. Positioning errors are a significant danger to patients in procedures involving robots and other automated devices. We have developed a new robotic system at the Johns Hopkins University to support cranial drilling in neurosurgery procedures. The robot provides advanced visualization and safety features. The generic algorithm described in this paper allows for automated compensation of patient motion through optical tracking and Kalman filtering. When applied to the neurosurgery setup, preliminary results show that it is possible to identify patient motion within 700 ms, and apply the appropriate compensation with an average of 1.24 mm positioning error after 2 s of setup time.

PMID:
19964394
DOI:
10.1109/IEMBS.2009.5333737
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center