Format

Send to

Choose Destination
See comment in PubMed Commons below
Mech Dev. 2010 Jan-Feb;127(1-2):36-48. doi: 10.1016/j.mod.2009.11.002. Epub 2009 Dec 2.

Distinct roles for Robo2 in the regulation of axon and dendrite growth by retinal ganglion cells.

Author information

  • 1Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.

Abstract

Guidance factors act on the tip of a growing axon to direct it to its target. What role these molecules play, however, in the control of the dendrites that extend from that axon's cell body is poorly understood. Slits, through their Robo receptors, guide many types of axons, including those of retinal ganglion cells (RGCs). Here we assess and contrast the role of Slit/Robo signalling in the growth and guidance of the axon and dendrites extended by RGCs in Xenopus laevis. As Xenopus RGCs extend dendrites, they express robo2 and robo3, while slit1 and slit2 are expressed in RGCs and in the adjacent inner nuclear layer. Interestingly, our functional data with antisense knockdown and dominant negative forms of Robo2 (dnRobo2) and Robo3 (dnRobo3) indicate that Slit/Robo signalling has no role in RGC dendrite guidance, and instead is necessary to stimulate dendrite branching, primarily via Robo2. Our in vitro culture data argue that Slits are the ligands involved. In contrast, both dnRobo2 and dnRobo3 inhibited the extension of axons and caused the misrouting of some axons. Based on these data, we propose that Robo signalling can have distinct functions in the axon and dendrites of the same cell, and that the specific combinations of Robo receptors could underlie these differences. Slit acts via Robo2 in dendrites as a branching/growth factor but not in guidance, while Robo2 and Robo3 function in concert in axons to mediate axonal interactions and respond to Slits as guidance factors. These data underscore the likelihood that a limited number of extrinsic factors regulate the distinct morphologies of axons and dendrites.

PMID:
19961927
DOI:
10.1016/j.mod.2009.11.002
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center