Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2009 Dec 1;4(12):e7992. doi: 10.1371/journal.pone.0007992.

Scalable steady state analysis of Boolean biological regulatory networks.

Author information

1
Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America. fay@cise.ufl.edu

Abstract

BACKGROUND:

Computing the long term behavior of regulatory and signaling networks is critical in understanding how biological functions take place in organisms. Steady states of these networks determine the activity levels of individual entities in the long run. Identifying all the steady states of these networks is difficult due to the state space explosion problem.

METHODOLOGY:

In this paper, we propose a method for identifying all the steady states of Boolean regulatory and signaling networks accurately and efficiently. We build a mathematical model that allows pruning a large portion of the state space quickly without causing any false dismissals. For the remaining state space, which is typically very small compared to the whole state space, we develop a randomized traversal method that extracts the steady states. We estimate the number of steady states, and the expected behavior of individual genes and gene pairs in steady states in an online fashion. Also, we formulate a stopping criterion that terminates the traversal as soon as user supplied percentage of the results are returned with high confidence.

CONCLUSIONS:

This method identifies the observed steady states of boolean biological networks computationally. Our algorithm successfully reported the G1 phases of both budding and fission yeast cell cycles. Besides, the experiments suggest that this method is useful in identifying co-expressed genes as well. By analyzing the steady state profile of Hedgehog network, we were able to find the highly co-expressed gene pair GL1-SMO together with other such pairs.

AVAILABILITY:

Source code of this work is available at http://bioinformatics.cise.ufl.edu/palSteady.html twocolumnfalse].

PMID:
19956604
PMCID:
PMC2779454
DOI:
10.1371/journal.pone.0007992
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center