Format

Send to

Choose Destination
Rev Sci Instrum. 2009 Nov;80(11):115108. doi: 10.1063/1.3257973.

A gas-tight Cu K alpha x-ray transparent reaction chamber for high-temperature x-ray diffraction analyses of halide gas/solid reactions.

Author information

1
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

Abstract

An externally heated, x-ray transparent reaction chamber has been developed to enable the dynamic high temperature x-ray diffraction (HTXRD) analysis of a gas/solid [TiF(4)(g)/SiO(2)(s)] reaction involving a halide gas reactant formed at elevated temperatures (up to 350 degrees C) from a condensed source (TiF(4) powder) sealed within the chamber. The reaction chamber possessed x-ray transparent windows comprised of a thin (13 microm) internal layer of Al foil and a thicker (125 microm) external Kapton film. After sealing the SiO(2) specimens (diatom frustules or Stober spheres) above TiF(4) powder within the reaction chamber, the chamber was heated to a temperature in the range of 160-350 degrees C to allow for internal generation of TiF(4)(g). The TiF(4)(g) underwent a metathetic reaction with the SiO(2) specimen to yield a TiOF(2)(s) product. HTXRD analysis, using Cu K alpha x rays passed through the Kapton/Al windows of the chamber, was used to track the extent of SiO(2) consumption and/or TiOF(2) formation with time. The Al foil inner layer of the windows protected the Kapton film from chemical attack by TiF(4)(g), whereas the thicker, more transparent Kapton film provided the mechanical strength needed to contain this gas. By selecting an appropriate combination of x-ray transparent materials to endow such composite windows with the required thermal, chemical, and mechanical performance, this inexpensive reaction chamber design may be applied to the HTXRD analyses of a variety of gas/solid reactions.

PMID:
19947758
DOI:
10.1063/1.3257973

Supplemental Content

Full text links

Icon for American Institute of Physics
Loading ...
Support Center