Format

Send to

Choose Destination
See comment in PubMed Commons below
Zoology (Jena). 2010 Jan;113(1):1-9. doi: 10.1016/j.zool.2009.06.001. Epub 2009 Nov 24.

The evolutionary origin of the vertebrate neural crest and its developmental gene regulatory network--insights from amphioxus.

Author information

1
Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan. jkyu@gate.sinica.edu.tw <jkyu@gate.sinica.edu.tw>

Abstract

The neural crest is an embryonic cell population unique to vertebrates. During vertebrate embryogenesis, neural crest cells are first induced from the neural plate border; subsequently, they delaminate from the dorsal neural tube and migrate to their destination, where they differentiate into a wide variety of derivatives. The emergence of the neural crest is thought to be responsible for the evolution of many complex novel structures of vertebrates that are lacking in invertebrate chordates. Despite its central importance in understanding the origin of vertebrates, the evolutionary origin of the neural crest remains elusive. The basal chordate amphioxus (Branchiostoma floridae) occupies an outgroup position that is useful for investigating this question. In this review, I summarize recent genomic and comparative developmental studies between amphioxus and vertebrates and discuss their implications for the evolutionary origin of neural crest cells. I focus mainly on the origin of the gene regulatory network underlying neural crest development, and suggest several hypotheses regarding how this network could have been assembled during early vertebrate evolution.

PMID:
19939657
DOI:
10.1016/j.zool.2009.06.001
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center