Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2009 Nov 20;4(11):e7931. doi: 10.1371/journal.pone.0007931.

Early-onset and robust amyloid pathology in a new homozygous mouse model of Alzheimer's disease.

Author information

1
Evotec Neurosciences GmbH, Hamburg, Germany. antje.willuweit@evotec.com

Abstract

BACKGROUND:

Transgenic mice expressing mutated amyloid precursor protein (APP) and presenilin (PS)-1 or -2 have been successfully used to model cerebral beta-amyloidosis, one of the characteristic hallmarks of Alzheimer's disease (AD) pathology. However, the use of many transgenic lines is limited by premature death, low breeding efficiencies and late onset and high inter-animal variability of the pathology, creating a need for improved animal models. Here we describe the detailed characterization of a new homozygous double-transgenic mouse line that addresses most of these issues.

METHODOLOGY/PRINCIPAL FINDINGS:

The transgenic mouse line (ARTE10) was generated by co-integration of two transgenes carrying the K670N/M671L mutated amyloid precursor protein (APP(swe)) and the M146V mutated presenilin 1 (PS1) both under control of a neuron-specific promoter. Mice, hemi- as well as homozygous for both transgenes, are viable and fertile with good breeding capabilities and a low rate of premature death. They develop robust AD-like cerebral beta-amyloid plaque pathology with glial inflammation, signs of neuritic dystrophy and cerebral amyloid angiopathy. Using our novel image analysis algorithm for semi-automatic quantification of plaque burden, we demonstrate an early onset and progressive plaque deposition starting at 3 months of age in homozygous mice with low inter-animal variability and 100%-penetrance of the phenotype. The plaques are readily detected in vivo by PiB, the standard human PET tracer for AD. In addition, ARTE10 mice display early loss of synaptic markers and age-related cognitive deficits. By applying a gamma-secretase inhibitor we show a dose dependent reduction of soluble amyloid beta levels in the brain.

CONCLUSIONS:

ARTE10 mice develop a cerebral beta-amyloidosis closely resembling the beta-amyloid-related aspects of human AD neuropathology. Unifying several advantages of previous transgenic models, this line particularly qualifies for the use in target validation and for evaluating potential diagnostic or therapeutic agents targeting the amyloid pathology of AD.

PMID:
19936202
PMCID:
PMC2775952
DOI:
10.1371/journal.pone.0007931
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center