Format

Send to

Choose Destination
See comment in PubMed Commons below
RNA. 2010 Jan;16(1):79-90. doi: 10.1261/rna.1692310. Epub 2009 Nov 19.

Signature amino acids enable the archaeal L7Ae box C/D RNP core protein to recognize and bind the K-loop RNA motif.

Author information

1
Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.

Abstract

The archaeal L7Ae and eukaryotic 15.5kD protein homologs are members of the L7Ae/15.5kD protein family that characteristically recognize K-turn motifs found in both archaeal and eukaryotic RNAs. In Archaea, the L7Ae protein uniquely binds the K-loop motif found in box C/D and H/ACA sRNAs, whereas the eukaryotic 15.5kD homolog is unable to recognize this variant K-turn RNA. Comparative sequence and structural analyses, coupled with amino acid replacement experiments, have demonstrated that five amino acids enable the archaeal L7Ae core protein to recognize and bind the K-loop motif. These signature residues are highly conserved in the archaeal L7Ae and eukaryotic 15.5kD homologs, but differ between the two domains of life. Interestingly, loss of K-loop binding by archaeal L7Ae does not disrupt C'/D' RNP formation or RNA-guided nucleotide modification. L7Ae is still incorporated into the C'/D' RNP despite its inability to bind the K-loop, thus indicating the importance of protein-protein interactions for RNP assembly and function. Finally, these five signature amino acids are distinct for each of the L7Ae/L30 family members, suggesting an evolutionary continuum of these RNA-binding proteins for recognition of the various K-turn motifs contained in their cognate RNAs.

PMID:
19926724
PMCID:
PMC2802039
DOI:
10.1261/rna.1692310
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center