Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 2010 Jan 27;426(1):73-83. doi: 10.1042/BJ20091414.

Paraoxonase 2 is down-regulated by the Pseudomonas aeruginosa quorumsensing signal N-(3-oxododecanoyl)-L-homoserine lactone and attenuates oxidative stress induced by pyocyanin.

Author information

  • 1Department of Pharmacology, University Medicine Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.

Abstract

Two virulence factors produced by Pseudomonas aeruginosa are pyocyanin and N-(3-oxododecanoyl)-L-homoserine lactone (3OC12). Pyocyanin damages host cells by generating ROS (reactive oxygen species). 3OC12 is a quorum-sensing signalling molecule which regulates bacterial gene expression and modulates host immune responses. PON2 (paraoxonase-2) is an esterase that inactivates 3OC12 and potentially attenuates Ps. aeruginosa virulence. Because increased intracellular Ca2+ initiates the degradation of PON2 mRNA and protein and 3OC12 causes increases in cytosolic Ca2+, we hypothesized that 3OC12 would also down-regulate PON2. 3OC12 and the Ca2+ ionophore A23187 caused a rapid cytosolic Ca2+ influx and down-regulated PON2 mRNA, protein and hydrolytic activity in A549 and EA.hy 926 cells. The decrease in PON2 hydrolytic activity was much more extensive and rapid than decreases in protein, suggesting a rapid post-translational mechanism which blocks PON2's hydrolytic activity. The Ca2+ chelator BAPTA/AM [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)] diminished the ability of 3OC12 to decrease PON2, demonstrating that the effects are mediated by Ca2+. PON2 also has antioxidative properties and we show that it protects cells from pyocyanin-induced oxidative stress. Knockdown of PON2 by transfecting cells with siRNA (small interfering RNA) rendered them more sensitive to, whereas overexpression of PON2 protected cells from, pyocyanin-induced ROS formation. Additionally, 3OC12 potentiated pyocyanin-induced ROS formation, presumably by inactivating PON2. These findings support a key role for PON2 in the defence against Ps. aeruginosa virulence, but also reveal a mechanism by which the bacterium may subvert the protection afforded by PON2.

PMID:
19925453
DOI:
10.1042/BJ20091414
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center