Format

Send to

Choose Destination
Biochemistry. 1991 Feb 5;30(5):1403-12.

NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-Oxo-7H-dG(syn).dA(anti) alignment at lesion site.

Author information

1
Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York 10032.

Abstract

Proton NMR studies are reported on the complementary d(C1-C2-A3-C4-T5-A6-oxo-G7-T8-C9-A10-C11-C12).d(G13-G14-T15- G16-A17-A18-T19- A20-G21-T22-G23-G24) dodecanucleotide duplex (designated 8-oxo-7H-dG.dA 12-mer), which contains a centrally located 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) residue, a group commonly found in DNA that has been exposed to ionizing radiation or oxidizing free radicals. From the NMR spectra it can be deduced that this moiety exists as two tautomers, or gives rise to two DNA conformations, that are in equilibrium and that exchange slowly. The present study focuses on the major component of the equilibrium that originates in the 6,8-dioxo tautomer of 8-oxo-7H-dG. We have assigned the exchangeable NH1, NH7, and NH2-2 base protons located on the Watson-Crick and Hoogsteen edges of 8-oxo-7H-dG7 in the 8-oxo-7H-dG.dA 12-mer duplex, using an analysis of one- and two-dimensional nuclear Overhauser enhancement (NOE) data in H2O solution. The observed NOEs derived from the NH7 proton of 8-oxo-7H-dG7 to the H2 and NH2-6 protons of dA18 establish an 8-oxo-7H-dG7(syn).dA 18(anti) alignment at the lesion site in the 8-oxo-7H-dG.dA 12-mer duplex in solution. This alignment, which places the 8-oxo group in the minor groove, was further characterized by an analysis of the NOESY spectrum of the 8-oxo-7H-dG.dA 12-mer duplex in D2O solution. We were able to detect a set of intra- and interstrand NOEs between protons (exchangeable and nonexchangeable) on adjacent residues in the d(A6-oxo-G7-T8).d(A17-A18-T19) trinucleotide segment centered about the lesion site that establishes stacking of the oxo-dG7(syn).dA(anti) pair between stable Watson-Crick dA6.dT19 and dT8.dA17 base pairs with minimal perturbation of the helix. Thus, both strands of the 8-oxo-7H-dG.dA 12-mer duplex adopt right-handed conformations at and adjacent to the lesion site, the unmodified bases adopt anti glycosidic torsion angles, and the bases are stacked into the helix. The energy-minimized conformation of the central d(A6-oxo-G7-T8).d(A17-A18-T19) segment requires that the 8-oxo-7H-dG7(syn).dA18(anti) alignment be stabilized by two hydrogen bonds from NH7 and O6 of 8-oxo-7H-dG7(syn) to N1 and NH2-6 of dA18(anti), respectively, at the lesion site.(ABSTRACT TRUNCATED AT 400 WORDS).

PMID:
1991121
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center