Send to

Choose Destination
See comment in PubMed Commons below
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031801. Epub 2009 Sep 22.

Gel-like elasticity in glass-forming side-chain liquid-crystal polymers.

Author information

  • 1Institut Charles Sadron, UPR 22, 67034 Strasbourg Cedex 2, France.


We study the complex shear modulus G of two side-chain liquid-crystal polymers (SCLCPs), a methoxy-phenylbenzoate substituted polyacrylate (thereafter called PAOCH3 ), and a cyanobiphenyl substituted polyacrylate supplied by Merck (thereafter called LCP105) using a piezoelectric rheometer. Two methods of filling the cell are used: (a) a capillary method, which can be used only at high temperature because of the low value of the viscosity, and (b) the classical one, thereafter called compression method, which consists in placing the sample between the two slides of the cell and to bring them closer. By filling the cell at high temperature either with the compression or the capillary method, we show that the response of both compounds is liquidlike ( G' approximately f2 and G'' approximately f , where f is the frequency) for temperatures higher than a certain temperature T0 and gel-like (G' approximately const, G'' approximately f) below T0. This change in behavior from the conventional flow response to a gel-like response, when approaching the glass transition, is observed for nonsliding conditions and for very weak-imposed shear strains. It can be explained by a percolation-type mechanism of preglassy elastic clusters, which correspond to long-range and long-lived density fluctuations that are frozen at the time scale of the experiment. The sample response is therefore the sum of two contributions: one is due to the flow response of the polymer melt and the other to the elastic response of the network formed by the preglassy elastic clusters. By filling the cell below T0 with the compression method, both compounds exhibit a gel-type behavior by gently bringing closer the slides of the cell and an anomalous low-frequency behavior characterized by G'=const and G''=const by increasing the pressure used to bring closer the slides of the cell. A compression-assisted aggregation of the preglassy elastic clusters can explain both the increase in the low-frequency elastic plateau when the sample thickness is decreased and the anomalous low-frequency behavior. Further evidence for the existence of these elastic clusters is provided by the following results: (a) the nonlinear response of the samples as a function of the strain amplitude, which can be explained by the Payne effect, and (b) the aggregation effects, which can be mimicked by a polydimethylsiloxane melt filled with silica particles, the silica particles playing the role of the preglassy elastic clusters. All these observations show that PAOCH3 is not a macroscopically solidlike material with an unconventional type of elasticity, as claimed by Mendil [Phys. Rev. Lett. 96, 077801 (2006)]. The gel-type behavior observed here on two SCLCPs ( PAOCH3 and LCP105) and previously on some conventional flexible polymers (atactic polystyrene, poly-n-butylacrylate) seems to be a generic effect of the glass transition. The presence of the preglassy elastic clusters questions the widely accepted hypothesis of ergodicity in the supercooled state.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center