Send to

Choose Destination
J Mol Biol. 2010 Feb 12;396(1):19-30. doi: 10.1016/j.jmb.2009.11.002. Epub 2009 Nov 6.

Compensated pathogenic deviations: analysis of structural effects.

Author information

Institute of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK.


Pathogenic deviations (PDs) in humans are disease-causing missense mutations. However, in some cases, these disease-associated residues occur as the wild-type residues in functionally equivalent proteins in other species and these cases are termed 'compensated pathogenic deviations' (CPDs). The lack of pathogenicity in a non-human protein is presumed to be explained in most cases by the presence of compensatory mutations, most commonly within the same protein. Identification of structural features of CPDs and detection of specific compensatory events will help us to understand traversal along fitness landscape valleys in protein evolution. We divided mutations listed in the OMIM (Online Mendelian Inheritance in Man) database into PD and CPD data sets and performed two independent analyses: (i) We searched for potential compensatory mutations spatially close to the CPDs and, (ii) using our SAAPdb database, we examined likely structural effects to try to explain why mutations are pathogenic, comparing PDs and CPDs. Our data sets were obtained from a set of 245 human proteins of known structure and contained a total of 2328 mutations of which 453 (from 85 structures) were seen to be compensated in at least one functionally equivalent protein in another (non-human) species. Structural analysis results confirm previous findings that CPDs are, on average, 'milder' in their likely structural effects than uncompensated PDs and tend to be on the protein surface. We also showed that the residues surrounding the CPD residue in the folded protein are more often mutated than the residues surrounding an uncompensated mutation, supporting the hypothesis that compensation is largely a result of structurally local mutations.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center