Format

Send to

Choose Destination
See comment in PubMed Commons below
Stem Cells. 2010 Jan;28(1):113-21. doi: 10.1002/stem.247.

An FGF4-FRS2alpha-Cdx2 axis in trophoblast stem cells induces Bmp4 to regulate proper growth of early mouse embryos.

Author information

1
Division of Genetics, University of Tokyo, Tokyo 108-863, Japan.

Abstract

A variety of stem cells are controlled by the actions of multiple growth factors in vitro. However, it remains largely unclear how growth factors control the proliferation and differentiation of stem cells in vivo. Here, we describe a novel paracrine mechanism for regulating a stem cell niche in early mammalian embryos, which involves communication between the inner cell mass (ICM) and the trophectoderm, from which embryonic stem (ES) cells and trophoblast stem (TS) cells can be derived, respectively. It is known that ES cells produce fibroblast growth factor (FGF)4 and that TS cells produce bone morphogenetic protein (Bmp)4. We provide evidence that FRS2alpha mediates activation of the extracellular signal-regulated progein kinase (ERK) pathway to enhance expression of transcription factor Cdx2 in TS cells in response to FGF4. Cdx2 in turn binds to an FGF4-responsive enhancer element of the promoter region of Bmp4, leading to production and secretion of Bmp4. Moreover, exogenous Bmp4 is able to rescue the defective growth of Frs2alpha-null ICM. These findings suggest an important role of Cdx2 for production of Bmp4 in TS cells to promote the proper growth of early mouse embryos.

PMID:
19890878
DOI:
10.1002/stem.247
[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center