Format

Send to

Choose Destination
J Exp Med. 2009 Nov 23;206(12):2837-50. doi: 10.1084/jem.20090778. Epub 2009 Nov 2.

Niche recycling through division-independent egress of hematopoietic stem cells.

Author information

1
Institute of Stem Cell Biology and Regenerative Medicine Stanford University School of Medicine Stanford, CA 94305, USA. deeptab@wustl.edu

Abstract

Hematopoietic stem cells (HSCs) are thought to reside in discrete niches through stable adhesion, yet previous studies have suggested that host HSCs can be replaced by transplanted donor HSCs, even in the absence of cytoreductive conditioning. To explain this apparent paradox, we calculated, through cell surface phenotyping and transplantation of unfractionated blood, that approximately 1-5% of the total pool of HSCs enters into the circulation each day. Bromodeoxyuridine (BrdU) feeding experiments demonstrated that HSCs in the peripheral blood incorporate BrdU at the same rate as do HSCs in the bone marrow, suggesting that egress from the bone marrow to the blood can occur without cell division and can leave behind vacant HSC niches. Consistent with this, repetitive daily transplantations of small numbers of HSCs administered as new niches became available over the course of 7 d led to significantly higher levels of engraftment than did large, single-bolus transplantations of the same total number of HSCs. These data provide insight as to how HSC replacement can occur despite the residence of endogenous HSCs in niches, and suggest therapeutic interventions that capitalize upon physiological HSC egress.

PMID:
19887396
PMCID:
PMC2806613
DOI:
10.1084/jem.20090778
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center