Send to

Choose Destination
Eur J Neurosci. 2009 Nov;30(9):1665-75. doi: 10.1111/j.1460-9568.2009.06972.x. Epub 2009 Oct 28.

Peripheral oscillators: the driving force for food-anticipatory activity.

Author information

Departamento de Anatomia, Facultad de Medicina UNAM, México, México.


Food-anticipatory activity (FAA) and especially the food-entrained oscillator (FEO) have driven many scientists to seek their mechanisms and locations. Starting our research on FAA we, possibly like many other scientists, were convinced that clock genes held the key to the location and the underlying mechanisms for FAA. In this review, which is aimed especially at discussing the contribution of the peripheral oscillators, we have put together the accumulating evidence that the clock gene machinery as we know it today is not sufficient to explain food entrainment. We discuss the contribution of three types of oscillating processes: (i) within the suprachiasmatic nucleus (SCN), neurons capable of maintaining a 24-h oscillation in electrical activity driven by a set of clock genes; (ii) oscillations in metabolic genes and clock genes in other parts of the brain and in peripheral organs driven by the SCN or by food, which damp out after a few cycles; (iii) an FEO which, we propose, is a system built up of different oscillatory processes and consisting of an as-yet-unidentified network of central and peripheral structures. In view of the evidence that clock genes and metabolic oscillations are not essential for the persistence of FAA we propose that food entrainment is initiated by a repeated metabolic state of scarcity that drives an oscillating network of brain nuclei in interaction with peripheral oscillators. This complex may constitute the proposed FEO and is distributed in our peripheral organs as well as within the central nervous system.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center