Send to

Choose Destination
See comment in PubMed Commons below
Chem Biol. 2009 Oct 30;16(10):1031-44. doi: 10.1016/j.chembiol.2009.09.015.

Deciphering biosynthesis of the RNA polymerase inhibitor streptolydigin and generation of glycosylated derivatives.

Author information

Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain.


The biosynthetic gene cluster for the dienoyltetramic acid streptolydigin was identified and characterized from the producer organism Streptomyces lydicus NRRL2433. Sequence analysis of an 80.8 kb DNA region revealed the presence of 38 ORFs, 29 of which are probably involved in streptolydigin biosynthesis and would code for all activities required for its biosynthesis. Six insertional inactivation mutants were generated in the sequenced region to prove its involvement in streptolydigin biosynthesis, to define the boundaries of the cluster, to functionally characterize some genes, and to generate novel derivatives. A model for streptolydigin biosynthesis is proposed that includes a probable domain skipping in the streptolydigin PKS and the participation of a free-standing adenylation domain protein. Some bioactive derivatives of streptolydigin with altered glycosylation pattern have been produced by combinatorial biosynthesis showing a certain degree of flexibility of the L-rhodinosyl transferase SlgG for the recognition of 2,3,6-trideoxyhexoses and 2,6-dideoxyhexoses, both in D- and L-configuration.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center