Format

Send to

Choose Destination
Nature. 1991 Jan 17;349(6306):257-60.

Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1.

Author information

1
Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032.

Abstract

The zinc-finger transcription factor GATA-1 (previously known as GF-1, NF-E1 or Eryf 1 binds to GATA consensus elements in regulatory regions of the alpha- and beta-globin gene clusters and other erythroid cell-specific genes. Analysis of the effects of mutations in GATA-binding sites in cell culture and in binding assays in vitro, as well as transactivation studies with GATA-1 expression vectors in heterologous cells, have provided indirect evidence that this factor is involved in the activation of globin and other genes during erythroid cell maturation. GATA-1 is also expressed in megakaryocytes and mast cells, but not in other blood cell lineages or in non-haemopoietic cells. To investigate the role of this factor in haematopoiesis in vivo, we disrupted the X-linked GATA-1 gene by homologous recombination in a male (XY) murine embryonic stem cell line and tested the GATA-1-deficient cells for their ability to contribute to different tissues in chimaeric mice. The mutant embryonic stem cells contributed to all non-haemopoietic tissues tested and to a white blood cell fraction, but failed to give rise to mature red blood cells. This demonstrates that GATA-1 is required for the normal differentiation of erythroid cells, and that other GATA-binding proteins cannot compensate for its absence.

PMID:
1987478
DOI:
10.1038/349257a0
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center